perm filename HIERAR[W84,JMC] blob
sn#744239 filedate 1984-02-23 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 hierar[w84,jmc] inheritance
C00004 00003
C00006 ENDMK
C⊗;
hierar[w84,jmc] inheritance
Discussion with Leslie Pack.
It looks like the problems with variable hierarchy vanish with
enough reification. Here are some axioms developed in a 1984 Feb 23
discussion with Leslie Pack.
ordinarily(Penguin, Not Fly)
[∃c'.class is-a c' ∧ c' is-a c ∧ ordinarily(c',not p)] ⊃ ab aspect1(c,class,p)
ordinarily(c,p) ∧ class is-a c ∧ ¬ab aspect1(c,class,p) ⊃ ordinarily(class,p)
mem(Joe,Adelie)
Adelie is-a Penguin
mem(x,c) ∧ c is-a c' ⊃ mem(x,c')
c'' is-a c' ∧ c' is-a c ⊃ c'' is-a c
Questions:
1. Can these be used directly as a Prolog program?
2. Does this set of axioms really work? Some checking is required.
∀c1 c2 p.ordinarily(c1,p) ∧ c1 ≤ c2 ∧ ¬ab aspect1(c1,c2,p) ⊃ ordinarily(c2,p)
∀c1 c2 c3 p.c1 ≤ c2 ∧ c2 ≤ c3 ∧ ordinarily(c2, not p) ⊃ ab aspect1(c1,c3,p)
∀x c p.in(x,c) ∧ ordinarily(c,p) ∧ ¬ab aspect3(x,c,p) ⊃ ap(p,x)
∀x c1 c2 p.in(x,c1) ∧ c1 ≤ c2 ∧ ordinarily(c1,not p) ⊃ ab aspect3(x,c2,p)